Optimum conditions for adsorptive storage.
نویسندگان
چکیده
The storage of gases in porous adsorbents, such as activated carbon and carbon nanotubes, is examined here thermodynamically from a systems viewpoint, considering the entire adsorption-desorption cycle. The results provide concrete objective criteria to guide the search for the "Holy Grail" adsorbent, for which the adsorptive delivery is maximized. It is shown that, for ambient temperature storage of hydrogen and delivery between 30 and 1.5 bar pressure, for the optimum adsorbent the adsorption enthalpy change is 15.1 kJ/mol. For carbons, for which the average enthalpy change is typically 5.8 kJ/mol, an optimum operating temperature of about 115 K is predicted. For methane, an optimum enthalpy change of 18.8 kJ/mol is found, with the optimum temperature for carbons being 254 K. It is also demonstrated that for maximum delivery of the gas the optimum adsorbent must be homogeneous, and that introduction of heterogeneity, such as by ball milling, irradiation, and other means, can only provide small increases in physisorption-related delivery for hydrogen. For methane, heterogeneity is always detrimental, at any value of average adsorption enthalpy change. These results are confirmed with the help of experimental data from the literature, as well as extensive Monte Carlo simulations conducted here using slit pore models of activated carbons as well as atomistic models of carbon nanotubes. The simulations also demonstrate that carbon nanotubes offer little or no advantage over activated carbons in terms of enhanced delivery, when used as storage media for either hydrogen or methane.
منابع مشابه
Adsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes
An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...
متن کاملAdsorptive Behavior and Voltammetric Determination of Hydralazine Hydrochloride at A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes
An electroanalytical method has been introduced for highly sensitive determination of hydralazine hydrochloride (Hy-HCl) based on its oxidation at a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNT/GCE). Studies showed that the electrochemical oxidation of Hy-HCl was accompanied by adsorption and highly sensitive responses could be achieved by adsorptive stripping volta...
متن کاملDetermination of trace amounts of lead by adsorptive cathodic stripping voltammetry in the presence of xylenol orange
Lead forms the complexes with xylenol orange in the basic solution. An adsorptivedifferential pulse stripping method for the determination of lead is proposed. The procedureinvolves an adsorptive accumulation of lead on a hanging mercury drop electrode (HMDE) inthe presence of xylenol orange, followed by reduction of adsorbed lead by voltammetric scanusing differential pulse modulation. The opt...
متن کاملDetermination of copper in whole blood by differential pulse adsorptive stripping voltammetry
A selective and sensitive method for determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The method is based on adsorptive accumulation of the complexes of Cu (II) ions with benzenesulfonyl hydrazide onto hanging mercury drop electrode (HMDE), followed by the reduction of the adsorbed species by differential pulse cathodic stripping vol...
متن کاملAnalysis of Lead in Blood Serum Samples by Voltammetry Method
In this article a novel, sensitive and selective cathodic adsorptive stripping procedure is reported for determining of lead. The method is based on adsorptive accumulation of PbN-Nitrozo-N-Phenylhydroxylamine on a hanging mercury drop electrode, followed by the reduction of adsorbed specie by voltammetric scan while followed differential pulse modulation. The optimum conditions for analysis of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2006